Our Skill in Modeling Mountain Rain and Snow is Bypassing the Skill of Our Observational Networks

Author:

Lundquist Jessica1,Hughes Mimi2,Gutmann Ethan3,Kapnick Sarah4

Affiliation:

1. Civil and Environmental Engineering, University of Washington, Seattle, Washington

2. NOAA/Earth Sciences Research Laboratory/Physical Sciences Division, Boulder, Colorado

3. National Center for Atmospheric Research, Boulder, Colorado

4. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Abstract

AbstractIn mountain terrain, well-configured high-resolution atmospheric models are able to simulate total annual rain and snowfall better than spatial estimates derived from in situ observational networks of precipitation gauges, and significantly better than radar or satellite-derived estimates. This conclusion is primarily based on comparisons with streamflow and snow in basins across the western United States and in Iceland, Europe, and Asia. Even though they outperform gridded datasets based on gauge networks, atmospheric models still disagree with each other on annual average precipitation and often disagree more on their representation of individual storms. Research to address these difficulties must make use of a wide range of observations (snow, streamflow, ecology, radar, satellite) and bring together scientists from different disciplines and a wide range of communities.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3