Intrapulse Modulation Radar Signal Recognition Using CNN with Second-Order STFT-Based Synchrosqueezing Transform

Author:

Dong Ning1,Jiang Hong1ORCID,Liu Yipeng1,Zhang Jingtao1

Affiliation:

1. College of Communication Engineering, Jilin University, Changchun 130012, China

Abstract

Intrapulse modulation classification of radar signals plays an important role in modern electronic reconnaissance, countermeasures, etc. In this paper, to improve the recognition rate at low signal-to-noise ratio (SNR), we propose a recognition method using the second-order short-time Fourier transform (STFT)-based synchrosqueezing transform (FSST2) combined with a modified convolution neural network, which we name MeNet. In particular, the radar signals are first preprocessed via the time–frequency analysis and STFT-based FSST2. Then, the informative features of the time–frequency images (TFIs) are deeply learned and classified through the MeNet with several specific convolutional blocks. The simulation results show that the overall recognition rate for seven types of intrapulse modulation radar signals can reach 95.6%, even when the SNR is −12 dB. Compared with other networks, the excellent recognition rate proves the superiority of our method.

Funder

Natural Science Foundation of Jilin Province

National Natural Science Foundation of China

Publisher

MDPI AG

Reference17 articles.

1. Kawalec, A., and Owczarek, R. (2004, January 17–19). Radar emitter recognition using intrapulse data. Proceedings of the 15th International Conference on Microwaves, Radar and Wireless Communications (IEEE Cat. No.04EX824), Warsaw, Poland.

2. Yuan, S., Wu, B., and Li, P. (2021). Intra-pulse modulation classification of radar emitter signals based on a 1-D selective rernel convolutional neural network. Remote Sens., 13.

3. Fusion image based radar signal feature extraction and modulation recognition;Gao;IEEE Access,2019

4. Zhang, M., Liu, L., and Diao, M. (2016). LPI radar waveform recognition based on time–frequency distribution. Sensors, 16.

5. Self-attention bi-LSTM networks for radar signal modulation recognition;Wei;IEEE Trans. Microw. Theory Techn.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3