Intra-Pulse Modulation Classification of Radar Emitter Signals Based on a 1-D Selective Kernel Convolutional Neural Network

Author:

Yuan Shibo,Wu Bin,Li Peng

Abstract

The intra-pulse modulation of radar emitter signals is a key feature for analyzing radar systems. Traditional methods which require a tremendous amount of prior knowledge are insufficient to accurately classify the intra-pulse modulations. Recently, deep learning-based methods, especially convolutional neural networks (CNN), have been used in classification of intra-pulse modulation of radar emitter signals. However, those two-dimensional CNN-based methods, which require dimensional transformation of the original sampled signals in the stage of data preprocessing, are resource-consuming and poorly feasible. In order to solve these problems, we proposed a one-dimensional selective kernel convolutional neural network (1-D SKCNN) to accurately classify the intra-pulse modulation of radar emitter signals. Compared with other previous methods described in the literature, the data preprocessing of the proposed method merely includes zero-padding, fast Fourier transformation (FFT) and amplitude normalization, which is much faster and easier to achieve. The experimental results indicate that the proposed method has the advantages of faster speed in data preprocessing and higher accuracy in intra-pulse modulation classification of radar emitter signals.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference25 articles.

1. Radar System Analysis and Modeling;Barton,2004

2. Fundamentals of Radar Signal Processing;Richards,2005

3. ELINT: The Interception and Analysis of Radar Signals;Wiley,2006

4. Deep Learning Aided Method for Automatic Modulation Recognition

5. Automatic Modulation Recognition of Digital Signals using Wavelet Features and SVM

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3