Design and Implementation of Virtual Security Function Based on Multiple Enclaves

Author:

Wang JuanORCID,Yu YangORCID,Li Yi,Fan Chengyang,Hao Shirong

Abstract

Network function virtualization (NFV) provides flexible and scalable network function for the emerging platform, such as the cloud computing, edge computing, and IoT platforms, while it faces more security challenges, such as tampering with network policies and leaking sensitive processing states, due to running in a shared open environment and lacking the protection of proprietary hardware. Currently, Intel® Software Guard Extensions (SGX) provides a promising way to build a secure and trusted VNF (virtual network function) by isolating VNF or sensitive data into an enclave. However, directly placing multiple VNFs in a single enclave will lose the scalability advantage of NFV. This paper combines SGX and click technology to design the virtual security function architecture based on multiple enclaves. In our design, the sensitive modules of a VNF are put into different enclaves and communicate by local attestation. The system can freely combine these modules according to user requirements, and increase the scalability of the system while protecting its running state security. In addition, we design a new hot-swapping scheme to enable the system to dynamically modify the configuration function at runtime, so that the original VNFs do not need to stop when the function of VNFs is modified. We implement an IDS (intrusion detection system) based on our architecture to verify the feasibility of our system and evaluate its performance. The results show that the overhead introduced by the system architecture is within an acceptable range.

Funder

National Natural Science Foundation of China

Foundation of Science and Technology on Information Assurance Laboratory

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Navigating the Threat Landscape in the Metaverse;Advances in Information Security, Privacy, and Ethics;2024-08-21

2. Intel Software Guard Extensions Applications: A Survey;ACM Computing Surveys;2023-07-17

3. An Optimization Methodology for Adapting Legacy SGX Applications to Use Switchless Calls;Applied Sciences;2021-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3