Abstract
A recent innovation in the trusted execution environment (TEE) technologies enables the delegation of privacy-preserving computation to the cloud system. In particular, Intel SGX, an extension of x86 instruction set architecture (ISA), accelerates this trend by offering hardware-protected isolation with near-native performance. However, SGX inherently suffers from performance degradation depending on the workload characteristics due to the hardware restriction and design decisions that primarily concern the security guarantee. The system-level optimizations on SGX runtime and kernel module have been proposed to resolve this, but they cannot effectively reflect application-specific characteristics that largely impact the performance of legacy SGX applications. This work presents an optimization strategy to achieve application-level optimization by utilizing asynchronous switchless calls to reduce enclave transition, one of the dominant overheads of using SGX. Based on the systematic analysis, our methodology examines the performance benefit for each enclave transition wrapper and selectively applies switchless calls without modifying the legacy codebases. The evaluation shows that our optimization strategy successfully improves the end-to-end performance of our showcasing application, an SGX-enabled network middlebox.
Funder
Sungshin Women’s University
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Towards Shielding 5G Control Plane Functions;2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN);2024-06-24
2. Advanced Technologies in Data and Information Security;Applied Sciences;2022-06-10