Phenotypic Plasticity Drives the Successful Expansion of the Invasive Plant Pedicularis kansuensis in Bayanbulak, China

Author:

Li Wenchao12,Huang Liju13,Yang Lei14,Liu Yanyan1,Chen Huimei14,Li Wenjun145ORCID

Affiliation:

1. State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

2. College of Life Sciences, Shihezi University, Shihezi 832003, China

3. College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China

4. Sino-Tajikistan Joint Laboratory for Conservation and Utilization of Biological Resources, Urumqi 830011, China

5. The Specimen Museum of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

Abstract

To better understand the phenotypic plasticity of the highly invasive native weed, Pedicularis kansuensis, we investigated and compared phenotypes (morphology, biomass, and nutrient composition) at different levels of invasion (low: 0 < cover ≤ 30%; medium: 30% < cover ≤ 70%; and high: cover > 70%). With the increase in invasion level, the plasticity of inflorescence length, single-leaf thickness, and specific leaf area increased, while the plasticity of single-leaf area and crown width decreased. During the invasion process, we observed significant density-dependent effects, including changed morphological characteristics, increased total aboveground biomass, and decreased plant height, inflorescence length, root length, crown width, single-leaf area, structure biomass of structures (root, stem, inflorescence), and individual biomass (p < 0.05). During the reproductive period of P. kansuensis, the resource allocation (C, N, and P content, total biomass, biomass allocation) to inflorescence was significantly higher than to root and stem, while the elemental ratios (C:N, C:P, N:P) of inflorescences were significantly lower than those of roots and stems (p < 0.05). When the invasion level increased, the ratio of inflorescence C:N and biomass allocation to roots increased significantly; conversely, inflorescence N and biomass allocation to inflorescences and stems decreased significantly (p < 0.05). This led to a decrease in resource allocation to aboveground parts and more resources allocated to the roots, significantly increasing the root-to-shoot ratio (p < 0.05). Based on the phenotypic differences among different invasion levels, we suggest that P. kansuensis adapted to a competitive environment by regulating morphology, biomass, and nutrient allocation, thereby enhancing the potential of invasion and spread.

Funder

National Natural Science Foundation of China

Tianshan Youth Program of Xinjiang Uygur Autonomous Region

Youth Innovation Promotion Association Foundation of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3