Bayesian Optimized Echo State Network Applied to Short-Term Load Forecasting

Author:

Trierweiler Ribeiro GabrielORCID,Guilherme Sauer João,Fraccanabbia Naylene,Cocco Mariani Viviana,dos Santos Coelho Leandro

Abstract

Load forecasting impacts directly financial returns and information in electrical systems planning. A promising approach to load forecasting is the Echo State Network (ESN), a recurrent neural network for the processing of temporal dependencies. The low computational cost and powerful performance of ESN make it widely used in a range of applications including forecasting tasks and nonlinear modeling. This paper presents a Bayesian optimization algorithm (BOA) of ESN hyperparameters in load forecasting with its main contributions including helping the selection of optimization algorithms for tuning ESN to solve real-world forecasting problems, as well as the evaluation of the performance of Bayesian optimization with different acquisition function settings. For this purpose, the ESN hyperparameters were set as variables to be optimized. Then, the adopted BOA employs a probabilist model using Gaussian process to find the best set of ESN hyperparameters using three different options of acquisition function and a surrogate utility function. Finally, the optimized hyperparameters are used by the ESN for predictions. Two datasets have been used to test the effectiveness of the proposed forecasting ESN model using BOA approaches, one from Poland and another from Brazil. The results of optimization statistics, convergence curves, execution time profile, and the hyperparameters’ best solution frequencies indicate that each problem requires a different setting for the BOA. Simulation results are promising in terms of short-term load forecasting quality and low error predictions may be achieved, given the correct options settings are used. Furthermore, since there is not an optimal global optimization solution known for real-world problems, correlations among certain values of hyperparameters are useful to guide the selection of such a solution.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3