Dual Deep Learning Networks Based Load Forecasting with Partial Real-Time Information and Its Application to System Marginal Price Prediction

Author:

Yudantaka KhikmafarisORCID,Kim Jung-SuORCID,Song HwachangORCID

Abstract

Load power forecast is one of most important tasks in power systems operation and maintenance. Enhancing its accuracy can be helpful to power systems scheduling. This paper presents how to use partial real-time temperature information in forecasting load power, which is usually done using past load power and temperature data. The partial real-time temperature information means temperature information for only part of the entire prediction time interval. To this end, a long short-term memory (LSTM) network is trained using past temperature and load power data in order to forecast load power, where forecasted load power depends on the temperature prediction implicitly. Then, in order to deal with the case where nontrivial temperature prediction errors happen, a multi-layer perceptron (MLP) network is trained using the past data describing the relation between temperature variation and load power variation. Then, the temperature is measured at the beginning of the prediction time-interval and compensated load forecast is computed by adding the output of the LSTM and that of the MLP whose input is the temperature prediction error. It is shown that the proposed compensation using the real-time temperature information indeed improves performance of load power forecast. This improved load forecast is used to predict system marginal price (SMP). The proposed method is validated using the real temperature and load power data of South Korea.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Short-term district power load self-prediction based on improved XGBoost model;Engineering Applications of Artificial Intelligence;2023-11

2. Data-driven next-generation smart grid towards sustainable energy evolution: techniques and technology review;Protection and Control of Modern Power Systems;2023-09-06

3. Research on Medium and Long Term Generation Side Deviation Prediction of New Power Market Based on Multi-Layer LSTM;Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering);2023-09

4. Analysis of System Marginal Price in the Turkish Electricity Market;Considerations of Territorial Planning, Space, and Economic Activity in the Global Economy;2023-05-05

5. Optimal re-distribution of incentives to the demand responsive loads during overlap;2023 9th International Conference on Electrical Energy Systems (ICEES);2023-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3