Short-term district power load self-prediction based on improved XGBoost model
Author:
Publisher
Elsevier BV
Subject
Electrical and Electronic Engineering,Artificial Intelligence,Control and Systems Engineering
Reference28 articles.
1. A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids;Aslam;Renew. Sust. Energ. Rev.,2021
2. Anomaly detection using causal sliding windows;Chang;IEEE J.-STARS,2015
3. Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. pp. 785–794.
4. Short-term load forecasting of power system based on deep forest algorithm;Chen;Electr. Power Construct.,2018
5. Pattern-based local linear regression models for short-term load forecasting;Dudek;Electr. Power Syst. Res.,2016
Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine learning-powered performance monitoring of proton exchange membrane water electrolyzers for enhancing green hydrogen production as a sustainable fuel for aviation industry;Energy Reports;2024-12
2. Machine learning based prospect targeting: A case of gold occurrence in central parts of Tanzania, East Africa;Ore and Energy Resource Geology;2024-10
3. Bridging data barriers among participants: Assessing the potential of geoenergy through federated learning;Applied Energy;2024-08
4. Sub-Hourly Load Forecasting for Community-Level Flexible Appliance Management;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30
5. Optimizing the extreme gradient boosting algorithm through the use of metaheuristic algorithms in sales forecasting;2024-06-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3