The Negative Impact of Triptolide on the Immune Function of Human Natural Killer Cells

Author:

Wang Na1ORCID,Min Xiaoyun1,Ma Ning1,Zhu Zhuoran1,Cao Bo1,Wang Yuan2,Yong Qing1,Huang Jingjin13,Li Ke1

Affiliation:

1. Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710004, China

2. Department of Geriatric Digestive Surgery, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710004, China

3. Genertec Universal Xi’an Aero-Engine Hospital, Xi’an 710016, China

Abstract

Triptolide (TP), a bioactive compound extracted the from traditional Chinese medicine Tripterygium wilfordii Hook F (TwHF), has been shown to be effective in treating several autoimmune diseases, and has suppressive effects in several key immune cells such as dendritic cells, T cells, and macrophages. However, it is unknown whether TP has an impact on natural killer (NK) cells. Here, we report that TP has suppressive effects on human NK cell activity and effector functions. The suppressive effects were observed in human peripheral blood mononuclear cell cultures and purified NK cells from healthy donors, as well as in purified NK cells from patients with rheumatoid arthritis. TP treatment induced downregulation of NK-activating receptor (CD54, CD69) expression and IFN-gamma secretion, in a dose-dependent manner. When exposed to K562 target cells, TP treatment induced inhibition of surface expression of CD107a and IFN-gamma synthesis in NK cells. Furthermore, TP treatment induced activation of inhibitory signaling (SHIP, JNK) and inhibition of MAPK signaling (p38). Thus, our findings demonstrate a previously unknown role for TP in NK cell functional suppression and reveal several key intracellular signaling that can be regulated by TP. Our findings also offer new insight into mechanisms of TP therapeutic treatment in autoimmune disease.

Funder

National Natural Science Foundation of China

Science and Technology Planning project of Xi’an

Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3