Abstract
Polyaspartic acid (PASP)-based green scale inhibitor has great potential application in water treatment. Here, we first synthesized PASP in ionic liquid. Then, an effective PASP-based green scale inhibitor was synthesized by ring-opening graft modification of PASP with both aspartic acid (ASP) and monoethanolamine (MEA). Its chemical composition was characterized by gel chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), and 1H nuclear magnetic resonance (1H NMR). Scale inhibition efficiency was measured by static scale inhibition tests. The results showed that the new PASP-based scale inhibitor has high scale inhibition to both CaCO3 and Ca3(PO4)2. When the concentration was increased to 2 mg/L, the inhibition efficiency of the new PASP-based scale inhibitor was 99% for CaCO3, while when the concentration was raised to only 4 mg/L, its inhibition efficiency increased to 100% for Ca3(PO4)2. Scanning electronic microscopy (SEM) and X-ray diffraction (XRD) were used to analyze the changes of crystal structure for CaCO3 and Ca3(PO4)2 after adding the new PASP-based scale inhibitor. The crystal size of CaCO3 and Ca3(PO4)2 became smaller and the crystal form became amorphous after adding the modified PASPs compared with adding pure PASP. Moreover, the modified PASP showed good biodegradation performance.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献