Scale inhibition performance of carboxylic acid polymers containing ether groups in artificial seawater: Experiments and MD simulation

Author:

Zhang Jiajia1ORCID,Sun Xueni1,Shao Hui1

Affiliation:

1. Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering Changzhou University Changzhou China

Abstract

AbstractThe lowered dispersibility of carboxylic acid polymers in the seawater system with high salt content results in reduced scale inhibition efficiency. To solve this problem, a series of carboxylic acid polymers containing ether groups were prepared by free radical polymerization using α‐allyl glycerol ether (AG) and vinyl monomers containing different numbers of carboxylic acid groups (acrylic acid [AA], maleic acid [MA], itaconic acid [IA], and aconitic acid [ANA]) as raw materials, and their scale inhibition properties in artificial seawater were studied. The static test results demonstrate that IA‐AG outperforms the other three polymers containing ether carboxylic acid in terms of scale inhibition performance, with CaCO3 and CaSO4 having scale inhibition rates of 95.16% and 98.73%, respectively. Furthermore, molecular dynamics (MD) simulation was employed to investigate the mechanism of scale inhibition by simulating the interaction between ether carboxylic acid polymers and the crystal surface. The results show that the order of binding energy between polymers and crystal faces is IA‐AG > ANA‐AG > MA‐AG > AA‐AG. The simulation results are in agreement with the experimental phenomena. The polymers can overcome their own deformation and adsorb on the crystal surfaces, thus inhibiting the growth of scale.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3