Abstract
Ultrahigh molecular weight polyethylene (UHMWPE) is a class of high-performance engineering plastics, exhibiting a unique set of properties and applications. Although many advances have been achieved in recent years, the synthesis of UHMWPE is still a great challenge. In this contribution, a series of zirconium and hafnium complexes, [2,6-(R1)2-4-R2-C6H2-N-C(camphyl)=C(camphyl)-N-2,6-(R1)2-4-R2-C6H2]MMe2(THF) (1-Zr: R1 = Me, R2 = H, M = Zr; 2-Zr: R1 = Me, R2 = Me, M = Zr; 1-Hf: R1 = Me, R2 = H, M = Hf; 2-Hf: R1 = Me, R2 = Me, M = Hf), bearing bidentate NN ligands with the bulky camphyl backbone were synthesized by the stoichiometric reactions of α-diimine ligands with MMe4 (M = Hf or Zr). All Zr and Hf metal complexes were analyzed using 1H and 13C NMR spectroscopy, and the molecular structures of complexes 1-Zr and 1-Hf were determined by single-crystal X-ray diffraction, revealing that the original α-diimine ligand was selectively reduced into the ene-diamido form and generated an 1,3-diaza-2-metallocyclopentene ring in the metal complexes. Zr complexes 1-Zr and 2-Zr showed moderate activity (up to 388 kg(PE)·mol−1(M)·h−1), poor copolymerization ability, but unprecedented molecular weight capability toward ethylene/1-octene copolymerization. Therefore, copolymers with ultrahigh molecular weights (>600 or 337 × 104 g∙mol−1) were successfully synthesized by 1-Zr or 2-Zr, respectively, with the borate cocatalyst [Ph3C][B(C6F5)4]. Surprisingly, Hf complexes 1-Hf and 2-Hf showed negligible activity under otherwise identical conditions, revealing the great influence of metal centers on catalytic performances.
Funder
National Natural Science Foundation of China
Higher Education Discipline Innovation Project
Natural Science Foundation of Shandong Province
Department of Education of Shandong Province
Tai'shan Scholar Engineering Construction Fund of Shandong Province of China
Subject
Physical and Theoretical Chemistry,Catalysis