Sulfuric Acid Treated g-CN as a Precursor to Generate High-Efficient g-CN for Hydrogen Evolution from Water under Visible Light Irradiation

Author:

Kang Hui-JuORCID,Lee Tae-GyuORCID,Bari Gazi A. K. M. RafiqulORCID,Seo Hye-Won,Park Jae-WooORCID,Hwang Hyun JinORCID,An Byeong-Hyeon,Suzuki NorihiroORCID,Fujishima Akira,Kim Jong-Ho,Shon Ho KyongORCID,Jun Young-SiORCID

Abstract

Modifying the physical, chemical structures of graphitic carbon nitride (g-CN) to improve its optoelectronic properties is the most efficient way to meet a high photoactivity for clean and sustainable energy production. Herein, a higher monomeric precursor for synthesizing improved micro-and electronic structure possessing g-CN was prepared by high-concentrated sulfuric acid (SA) treatment of bulk type g-CN (BCN). Several structural analyses show that after the SA treatment of BCN, the polymeric melon-based structure is torn down to cyameluric or cyanuric acid-based material. After re-polycondensation of this material as a precursor, the resulting g-CN has more condensed microstructure, carbon and oxygen contents than BCN, indicating that C, O co-doping by corrosive acid of SA. This g-CN shows a much better visible light absorption and diminished radiative charge recombination by the charge localization effect induced by heteroatoms. As a result, this condensed C, O co-doped g-CN shows the enhanced photocatalytic hydrogen evolution rate of 4.57 µmol/h from water under the visible light (>420 nm) by almost two times higher than that of BCN (2.37 µmol/h). This study highlights the enhanced photocatalytic water splitting performance as well as the provision of the higher monomeric precursor for improved g-CN.

Funder

National Research Council of Science and Technology

National Research Foundation of Korea

Ministry of Land, Infrastructure and Transport

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3