Comprehensive Insights and Advancements in Gel Catalysts for Electrochemical Energy Conversion

Author:

Bari Gazi A. K. M. Rafiqul1ORCID,Jeong Jae-Ho1

Affiliation:

1. School of Mechanical Smart and Industrial Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea

Abstract

Continuous worldwide demands for more clean energy urge researchers and engineers to seek various energy applications, including electrocatalytic processes. Traditional energy-active materials, when combined with conducting materials and non-active polymeric materials, inadvertently leading to reduced interaction between their active and conducting components. This results in a drop in active catalytic sites, sluggish kinetics, and compromised mass and electronic transport properties. Furthermore, interaction between these materials could increase degradation products, impeding the efficiency of the catalytic process. Gels appears to be promising candidates to solve these challenges due to their larger specific surface area, three-dimensional hierarchical accommodative porous frameworks for active particles, self-catalytic properties, tunable electronic and electrochemical properties, as well as their inherent stability and cost-effectiveness. This review delves into the strategic design of catalytic gel materials, focusing on their potential in advanced energy conversion and storage technologies. Specific attention is given to catalytic gel material design strategies, exploring fundamental catalytic approaches for energy conversion processes such as the CO2 reduction reaction (CO2RR), oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and more. This comprehensive review not only addresses current developments but also outlines future research strategies and challenges in the field. Moreover, it provides guidance on overcoming these challenges, ensuring a holistic understanding of catalytic gel materials and their role in advancing energy conversion and storage technologies.

Funder

Development of an X-ray-based non-destructive inspection platform for maintaining the blade lightning system

Development and demonstration of thermoelectric power generation system for marine application by waste heat utilization

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3