Author:
Hanaoka Toshiaki,Aoyagi Masaru,Edashige Yusuke
Abstract
Zeolite catalysts that could allow the efficient synthesis of n-butene, such as 1-butene, trans-2-butene, and cis-2-butene, in the dimethyl ether (DME)-to-olefin (DTO) reaction were investigated using a fixed-bed flow reactor. The zeolites were characterized by N2 adsorption and desorption, X-ray diffraction (XRD), thermogravimetry (TG), and NH3 temperature-programmed desorption (NH3-TPD). A screening of ten available zeolites indicated that the ferrierite zeolite with NH4+ as the cation showed the highest n-butene yield. The effect of the temperature of calcination as a pretreatment method on the catalytic performance was studied using three zeolites with suitable topologies. The calcination temperature significantly affected DME conversion and n-butene yield. The ferrierite zeolite showed the highest n-butene yield at a calcination temperature of 773 K. Multiple regression analysis was performed to determine the correlation between the six values obtained using N2 adsorption/desorption and NH3-TPD analyses, and the n-butene yield. The contribution rate of the strong acid site alone as an explanatory variable was 69.9%; however, the addition of micropore volume was statistically appropriate, leading to an increase in the contribution rate to 76.1%. Insights into the mechanism of n-butene synthesis in the DTO reaction were obtained using these parameters.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献