Improvement of n-Butene Yield in Dimethyl Ether-to-Olefin Reaction Using Ferrierite Zeolite Catalysts

Author:

Hanaoka Toshiaki1,Aoyagi Masaru1ORCID,Edashige Yusuke2

Affiliation:

1. Organic Materials Diagnosis Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima 739-0046, Hiroshima, Japan

2. Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Ehime, Japan

Abstract

Various ferrierite zeolites were investigated as catalysts for the dimethyl ether (DME)-to-olefin (DTO) reactions to efficiently synthesize n-butene, such as 1-butene, trans-2-butene, and cis-2-butene except for iso-butene using a fixed-bed flow reactor. Twenty P-loaded ferrierite zeolites with different structural parameters and acidic properties were prepared by the impregnation method by varying the P content and the temperature of air calcination as a pretreatment. The zeolites were characterized by X-ray diffraction (XRD), N2 adsorption-desorption, and NH3 temperature-programmed desorption (NH3-TPD). Micropore surface area, external surface area, total pore volume, micropore volume, and weak and strong acid sites affected the DTO reaction behavior. A high n-butene yield (31.2 C-mol%) was observed, which is higher than the previously reported maximum yield (27.6 C-mol%). Multiple regression analysis showed that micropore surface area and strong acid sites had a high correlation with n-butene yield. Based on our findings, we explained the reaction mechanism for selective n-butene synthesis except for iso-butene in the DTO reaction by the dual cycle model.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3