Abstract
Synthetic rubbers fabricated from 1,3-butadiene (BD) and its substituted monomers have been extensively used in tires, toughened plastics, and many other products owing to the easy polymerization/copolymerization of these monomers and the high stability of the resulting material in manufacturing operations and large-scale productions. The need for synthetic rubbers with increased environmental friendliness or endurance in harsh environments has motivated remarkable progress in the synthesis of BD and its substituted monomers in recent years. We review these developments with an emphasis on the reactive routes, the products, and the synthetic strategies with a scaling potential. We present reagents that are primarily from bio-derivatives, including ethanol, C4 alcohols, unsaturated alcohols, and tetrahydrofuran; the major products of BD and isoprene; and the by-products, activities, and selectivity of the reaction. Different catalyst systems are also compared. Further, substituted monomers with rigid, polar, or sterically repulsive groups, the purpose of which is to enhance thermal, mechanical, and interface properties, are also exhaustively reviewed. The synthetic strategies using BD and its substituted monomers have great potential to satisfy the increasing demand for better-performing synthetic rubbers at the laboratory scale; the laboratory-scale results are promising, but a big gap still exists between current progress and large scalability.
Funder
National Natural Science Foundation of China
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献