Author:
Hatahet Mhamad Hamza,Wagner Maximilian,Prager Andrea,Helmstedt Ulrike,Abel Bernd
Abstract
In the present article, electrodes containing a composite of platinum on top of a plasma-oxidized multi-layer graphene film are investigated as model electrodes that combine an exceptional high platinum utilization with high electrode stability. Graphene is thereby acting as a separator between the phosphate-based electrolyte and the platinum catalyst. Electrochemical impedance measurements in humidified hydrogen at 240 °C show area-normalized electrode resistance of 0.06 Ω·cm−2 for a platinum loading of ∼60 µgPt·cm−2, resulting in an outstanding mass normalized activity of almost 280 S·mgPt−1, exceeding even state-of-the-art electrodes. The presented platinum decorated graphene electrodes enable stable operation over 60 h with a non-optimized degradation rate of 0.15% h−1, whereas electrodes with a similar design but without the graphene as separator are prone to a very fast degradation. The presented results propose an efficient way to stabilize solid acid fuel cell electrodes and provide valuable insights about the degradation processes which are essential for further electrode optimization.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献