Ultra-Low Loading of Iron Oxide and Platinum on CVD-Graphene Composites as Effective Electrode Catalysts for Solid Acid Fuel Cells

Author:

Hatahet Mhamad Hamza1,Bryja Hagen2,Lotnyk Andriy2ORCID,Wagner Maximilian2ORCID,Abel Bernd1ORCID

Affiliation:

1. Institute of Chemical Technology, University Leipzig, 04103 Leipzig, Germany

2. Department Functional Surfaces, Leibniz Institute of Surface Engineering, 04318 Leipzig, Germany

Abstract

We propose a new design for electrocatalysts consisting of two electrocatalysts (platinum and iron oxide) that are deposited on the surfaces of an oxidized graphene substrate. This design is based on a simple structure where the catalysts were deposited separately on both sides of oxidized graphene substrate; while the iron oxide precipitated out of the etching solution on the bottom-side, the surface of the oxidized graphene substrate was decorated with platinum using the atomic layer deposition technique. The Fe2O3-decorated CVD-graphene composite exhibited better hydrogen electrooxidation performance (area-normalized electrode resistance (ANR) of ~600 Ω·cm−2) and superior stability in comparison with bare-graphene samples (ANR of ~5800 Ω·cm−2). Electrochemical impedance measurements in humidified hydrogen at 240 °C for (Fe2O3|Graphene|Platinum) electrodes show ANR of ~0.06 Ω·cm−2 for a platinum loading of ~60 µgPt·cm−2 and Fe2O3 loading of ~2.4 µgFe·cm−2, resulting in an outstanding mass normalized activity of almost 280 S·mgPt−1, exceeding even state-of-the-art electrodes. This ANR value is ~30% lower than the charge transfer resistance of the same electrode composition in the absence of Fe2O3 nanoparticles. Detailed study of the Fe2O3 electrocatalytic properties reveals a significant improvement in the electrode’s activity and performance stability with the addition of iron ions to the platinum-decorated oxidized graphene cathodes, indicating that these hybrid (Fe2O3|Graphene|Platinum) materials may serve as highly efficient catalysts for solid acid fuel cells and beyond.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3