Oxidation of Sulfamethoxazole by Rice Husk Biochar-Activated Persulfate

Author:

Avramiotis EfstathiosORCID,Frontistis ZachariasORCID,Manariotis Ioannis D.ORCID,Vakros John,Mantzavinos DionissiosORCID

Abstract

In the present study, biochars from rice husk were synthesized via pyrolysis at 400, 550, 700 and 850 °C for 1 h under a limited O2 atmosphere, characterized with a various techniques of and used as catalysts to activate persulfate and to degrade sulfamethoxazole (SMX). After physicochemical characterization of biochars. SMX degradation tests were performed using different water matrices, persulfate biochar and SMX concentrations and different initial pH solutions. Also, spiked solutions with bicarbonate, chloride, calcium nitrate, humic acid or alcohols were tested. It was found that catalytic reactivity rises with the pyrolysis temperature. Biochar is crucial for the oxidation of SMX and it can be described with a pseudo first–order kinetic model. Real matrices hinder the oxidation process, in waste water the SMX removal is 41% in 90 min, comparable with the inhibition obtained with spiked with bicarbonates solution (52% removal within 90 min) while complete removal can be achieved in ultrapure water matrices. The presence of alcohol slightly inhibits degradation contrary to the addition of sodium azide which causes significant inhibition, this is an evidence that degradation either under electron transfer/singlet oxygen control or dominated by surface-bound radicals.

Funder

Hellenic Foundation for Research and Innovation

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3