Persulfate Activation Using Biochar from Pomegranate Peel for the Degradation of Antihypertensive Losartan in Water: The Effects of Pyrolysis Temperature, Operational Parameters, and a Continuous Flow Reactor

Author:

Ioannidi Alexandra A.1,Frigana Aikaterini1,Vakros John1ORCID,Frontistis Zacharias2,Mantzavinos Dionissios1ORCID

Affiliation:

1. Department of Chemical Engineering, University of Patras, GR-26504 Patras, Greece

2. Department of Chemical Engineering, University of Western Macedonia, GR-50132 Kozani, Greece

Abstract

Biochar derived from pomegranate peel at different pyrolysis temperatures (450, 600, and 850 °C) was synthesized and characterized by BET, XRD, FTIR, and SEM-EDX. Its catalytic efficiency in the degradation of the antihypertensive losartan (LOS) in the presence of sodium persulfate was examined. The biochar pyrolyzed at 850 °C exhibited higher catalytic activity, which was correlated with the greater surface area and higher concentration of minerals on its surface. Interestingly, despite adsorption being favored at alkaline pH, pH 3 showed the highest LOS degradation. LOS decomposition followed pseudo-first-order kinetics. The addition of persulfate significantly increased LOS reduction, while the presence of inorganic and organic water matrix constituents such as sodium chloride, bicarbonate, and humic acid inhibited the oxidation. Experiments conducted with radical scavengers revealed that both hydroxyl and sulfate radicals, as well as singlet oxygen, participated in LOS decomposition, with the former being the dominant species. Using a continuous flow reactor, the system exhibited a satisfactory steady-state performance of 90% LOS removal for 114 h. Afterward, a moderate decrease in performance was observed, which can be attributed to the alteration of the catalyst’s surface and mineral dissolution due to acidity.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3