Abstract
Cu-based catalysts are promising for CO oxidation applications with catalyst deactivation being a major barrier. We start with a CuO/Al2O3 catalyst and find that while the CO conversion decreases, CO2 accumulates and the average Cu chemical state stays the same. It suggests CO2 self-poisoning, i.e., CO2 desorption is the rate-determining step. Subsequently, experiments are performed to prove this hypothesis by showing (1) CO2 adsorption inhibits O2 adsorption, (2) complete desorption of CO2 regenerate the catalyst, (3) pre-adsorbed CO2 quenches catalyst activity which recovers during the reaction and (4) the apparent activation energy is consistent with CO2 desorption. It is further evidenced by using a stronger CO2 adsorbing support CeO2 to speed up CO2 desorption from the CuO sites resulting in a superior CuO/CeO2 catalyst. It provides an example for experimentally deciding and speeding up the rate-determining step in a catalytic reaction.
Funder
Research Grants Council, University Grants Committee
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献