Abstract
Solution-processed perovskite quantum dots (QDs) have been intensively researched as next-generation photocatalysts owing to their outstanding optical properties. Even though the intrinsic physical properties of perovskite QDs have been significantly improved, the chemical stability of these materials remains questionable. Their low long-term chemical stability limits their commercial applicability in photocatalysis. In this study, we investigated the photodegradation mechanisms of perovskite QDs and their hybrids via photoluminescence (PL) by varying the excitation power and the ultraviolet (UV) exposure power. Defects in perovskite QDs and the interface between the perovskite QD and the co-catalyst influence the photo-stability of perovskite QDs. Consequently, we designed a stable perovskite QD film via an in-situ cross-linking reaction with amine-based silane materials. The surface ligand comprising 2,6-bis(N-pyrazolyl)pyridine nickel(II) bromide (Ni(ppy)) and 5-hexynoic acid improved the interface between the Ni co-catalyst and the perovskite QD. Then, ultrathin SiO2 was fabricated using 3-aminopropyltriethoxy silane (APTES) to harness the strong surface binding energy of the amine functional group of APTES with the perovskite QDs. The Ni co-catalyst content was further increased through Ni doping during purification using a short surface ligand (3-butynoic acid). As a result, stable perovskite QDs with rapid charge separation were successfully fabricated. Time-correlated single photon counting (TCSPC) PL study demonstrated that the modified perovskite QD film exhibited slow photodegradation owing to defect passivation and the enhanced interface between the Ni co-catalyst and the perovskite QD. This interface impeded the generation of hot carriers, which are a critical factor in photodegradation. Finally, a stable red perovskite QD was synthesized by applying the same strategy and the mixture between red and green QD/Ni(ppy)/SiO2 displayed an CO2 reduction capacity for CO (0.56 µmol/(g∙h)).
Funder
National Research Foundation of Korea
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献