Layered Double Hydroxide (LDH) Based Photocatalysts: An Outstanding Strategy for Efficient Photocatalytic CO2 Conversion

Author:

Razzaq Abdul,Ali Shahzad,Asif Muhammad,In Su-IlORCID

Abstract

CO2 conversion to solar fuels/chemicals is an alluring approach for narrowing critical issues of global warming, environmental pollution, and climate change, caused by excess atmospheric CO2 concentration. Amongst various CO2 conversion strategies, photocatalytic CO2 conversion (PCC) is considered as a promising approach, which utilizes inexpensive sunlight and water with a photocatalyst material. Hence, development of an efficient and a stable photocatalyst is an essential activity for the respective scientific community to upscale the PCC research domain. Until today, metal oxides, such as TiO2, ZnO, etc., are categorized as standard photocatalysts because of their relative stability, abundant availability and low cost. However, their performance is tethered by limited light absorption and somewhat physical properties. Recently, layered double hydroxides (LDHs) have offered an exciting and efficient way for PCC due to their superb CO2 adsorption and moderate photocatalytic properties. The LDH based photocatalysts show marvelous physiochemical and electrical properties like high surface area, stability, and excellent conductivity. In the present review article, a summarized survey is portrayed regarding latest development for LDH based photocatalysts with a focus on synthesis strategies employing various photocatalyst materials, influencing parameters and possible mechanism involved in PCC to useful fuels and chemicals like CO, CH4, CH3OH, and H2.

Funder

Ministry of Science and ICT, South Korea

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3