Abstract
Solar-driven photoelectrochemical (PEC) water splitting, using semiconductor photoelectrodes, is considered a promising renewable energy source and solution for environmental sustainability. Herein, we report polyvinyl alcohol (PVA) as a binder material for combining MoS2 and TiO2 nanotube arrays (TNAs) to improve PEC water splitting ability. By a thermal treatment process, the formation of the π conjunction in the PVA structure enhanced the PEC performance of MoS2/TNAs, exhibiting linear sweeps in an anodic direction with the current density over 65 μA/cm2 at 0 V vs. Ag/AgCl. Besides, the photoresponse ability of MoS2/TNAs is approximately 6-fold more significant than that of individual TNAs. Moreover, a Tafel slope of 140.6 mV/decade has been obtained for the oxygen evolution reaction (OER) of MoS2/TNAs materials.
Funder
Ho Chi Minh City University of Technology
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献