Abstract
Magnetic inducement was applied during metal loading to enhance Cu-Zn catalysts for methanol steam reforming in the temperature range of 200–300 °C. The supports used in this study were the γ-Al2O3 support and CeO2-Al2O3 supports prepared under different magnetic environments. Cu-Zn loading between the north and south poles (N-S) on the CeO2-Al2O3 support, prepared between two north poles (N-N), led to the highest H2 production at 300 °C (2796 ± 76 µmol/min), which is triple that of Cu-Zn/CeO2-Al2O3 prepared without magnetic inducement and ~11-fold the activity of the Cu-Zn/Al2O3 reference catalyst. The N-S magnetic environment during metal loading leads to lower reduction temperatures and larger Cu(1+):Cu(2+) ratio. These results showed that the pole arrangement of magnets during metal loading could affect the catalytic activity of the Cu-Zn catalyst owing to its influence on the reducibility and the oxidation state of Cu active metal.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献