Steam Reforming of Methanol over Nanostructured Pt/TiO2 and Pt/CeO2 Catalysts for Fuel Cell Applications

Author:

Papavasiliou Joan,Paxinou Alexandra,Słowik Grzegorz,Neophytides Stylianos,Avgouropoulos GeorgeORCID

Abstract

A research and technological challenge for fuel processors integrated with High Temperature Polymer Electrolyte Membrane Fuel Cells (HT-PEMFCs), also known as Internal Reforming Methanol Fuel Cells (IRMFCs), operating at 200–220 °C, is the development of highly efficient catalysts, which will be able to selectively (low CO and other by-products formation) produce the required quantity of hydrogen at these temperatures. In this work, various amounts of platinum were dispersed via deposition-precipitation (DP) and impregnation (I) methods onto the surface of hydrothermally prepared ceria nanorods (CNRs) and titania nanotubes (TNTs). These nanostructured catalysts were evaluated in steam reforming of methanol process targeting the operation level of IRMFCs. The (DP) method resulted in highly (atomically) dispersed platinum-based catalysts, as confirmed with Scanning Transmission Electron Microscopy (STEM) analysis, with a mean particle size of less than 1 nm in the case of 0.35 wt.% Pt/CNRs catalyst. Ultra-fine dispersion of platinum species correlated with the presence of oxygen vacancies, together with the enrichment of CNRs surface with active metallic phase resulted in a highly active catalyst achieving at 220 °C a hydrogen production rate of 5500 cm3 min−1 per g of loaded platinum.

Funder

Fuel Cells and Hydrogen Joint Undertaking

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3