Improved Deep Convolutional Neural Network to Classify Osteoarthritis from Anterior Cruciate Ligament Tear Using Magnetic Resonance Imaging

Author:

Awan Mazhar JavedORCID,Rahim Mohd Shafry Mohd,Salim Naomie,Rehman Amjad,Nobanee HaithamORCID,Shabir Hassan

Abstract

Anterior cruciate ligament (ACL) tear is caused by partially or completely torn ACL ligament in the knee, especially in sportsmen. There is a need to classify the ACL tear before it fully ruptures to avoid osteoarthritis. This research aims to identify ACL tears automatically and efficiently with a deep learning approach. A dataset was gathered, consisting of 917 knee magnetic resonance images (MRI) from Clinical Hospital Centre Rijeka, Croatia. The dataset we used consists of three classes: non-injured, partial tears, and fully ruptured knee MRI. The study compares and evaluates two variants of convolutional neural networks (CNN). We first tested the standard CNN model of five layers and then a customized CNN model of eleven layers. Eight different hyper-parameters were adjusted and tested on both variants. Our customized CNN model showed good results after a 25% random split using RMSprop and a learning rate of 0.001. The average evaluations are measured by accuracy, precision, sensitivity, specificity, and F1-score in the case of the standard CNN using the Adam optimizer with a learning rate of 0.001, i.e., 96.3%, 95%, 96%, 96.9%, and 95.6%, respectively. In the case of the customized CNN model, using the same evaluation measures, the model performed at 98.6%, 98%, 98%, 98.5%, and 98%, respectively, using an RMSprop optimizer with a learning rate of 0.001. Moreover, we also present our results on the receiver operating curve and area under the curve (ROC AUC). The customized CNN model with the Adam optimizer and a learning rate of 0.001 achieved 0.99 over three classes was highest among all. The model showed good results overall, and in the future, we can improve it to apply other CNN architectures to detect and segment other ligament parts like meniscus and cartilages.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3