Improving inceptionV4 model based on fractional-order snow leopard optimization algorithm for diagnosing of ACL tears

Author:

Wang Delei,Yan Yanqing

Abstract

AbstractIn the current research study, a new method is presented to diagnose Anterior Cruciate Ligament (ACL) tears by introducing an optimized version of the InceptionV4 model. Our proposed methodology utilizes a custom-made variant of the Snow Leopard Optimization Algorithm, known as the Fractional-order Snow Leopard Optimization Algorithm (FO-LOA), to extract essential features from knee magnetic resonance imaging (MRI) images. This results in a substantial improvement in the accuracy of ACL tear detection. By effectively extracting critical features from knee MRI images, our proposed methodology significantly enhances diagnostic accuracy, potentially reducing false negatives and false positives. The enhanced model based on FO-LOA underwent thorough testing using the MRNet dataset, demonstrating exceptional performance metrics including an accuracy rate of 98.00%, sensitivity of 98.00%, precision of 97.00%, specificity of 98.00%, F1-score of 98.00%, and Matthews Correlation Coefficient (MCC) of 88.00%. These findings surpass current methodologies like Convolutional Neural Network (CNN), Inception-v3, Deep Belief Networks and Improved Honey Badger Algorithm (DBN/IHBA), integration of the CNN with an Amended Cooking Training-based Optimizer version (CNN/ACTO), Self-Supervised Representation Learning (SSRL), signifying a significant breakthrough in ACL injury diagnosis. Using FO-SLO to optimize the InceptionV4 framework shows promise in improving the accuracy of ACL tear identification, enabling prompt and efficient treatment interventions.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3