Distribution Map of Frost Resistance for Cement-Based Materials Based on Pore Structure Change

Author:

Xuan Quy Nguyen,Noguchi Takumi,Na Seunghyun,Kim Jihoon,Hama YukioORCID

Abstract

This paper presents a prediction method and mathematical model based on experimental results for the change in pore structure of cement-based materials due to environmental conditions. It focuses on frost damage risk to cement-based materials such as mortar. Mortar specimens are prepared using water, ordinary Portland cement, and sand and the pore structure is evaluated using mercury intrusion porosimetry. New formulas are proposed to describe the relationship between the pore structure change and the modified maturity and to predict the durability factor. A quantitative prediction model is established from a modified maturity function considering the influences of environmental factors like temperature and relative humidity. With this model, the frost resistance of cement-based materials can be predicted based on weather data. Using the prediction model and climate data, a new distribution map of frost damage risk is created. It is found that summer weather significantly affects frost resistance, owing to the change in pore structure of cement-based mortar. The model provides a valuable tool for predicting frost damage risk based on weather data and is significant for further research.

Publisher

MDPI AG

Subject

General Materials Science

Reference44 articles.

1. Properties of Concrete;Neville,2012

2. Concrete: Microstructure, Properties and Materials;Mehta,2014

3. Modeling the deterioration of hydrated cement systems exposed to frost action

4. Study on Correction of Moisture Condition in Frost Damage Degradation Prediction;Hayashida;Proc. Jpn. Concr. Inst.,2011

5. Poroelastic model for concrete exposed to freezing temperatures

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3