Development and Verification of a Simulation Model for 120 kW Class Electric AWD (All-Wheel-Drive) Tractor during Driving Operation

Author:

Baek Seung-Yun,Kim Yeon-SooORCID,Kim Wan-SooORCID,Baek Seung-Min,Kim Yong-JooORCID

Abstract

This study was conducted to develop a simulation model of a 120 kW class electric all-wheel-drive (AWD) tractor and verify the model by comparing the measurement and simulation results. The platform was developed based on the power transmission system, including batteries, electric motors, reducers, wheels, and a charging system composed of a generator, an AC/DC converter, and chargers on each axle. The data measurement system was installed on the platform, consisting of an analog (current) and a digital part (rotational speed of electric motors and voltage and SOC (state of charge) level of batteries) by a CAN (controller area network) bus. The axle torque was calculated using the current and torque curves of the electric motor. The simulation model was developed by 1D simulation software and used axle torque and vehicle velocity data to create the simulation conditions. To compare the results of the simulation, a driving test using the platform was performed at a ground speed of 10 km/h in off- and on-road conditions. The similarities between the results were analyzed using statistical software and we found no significant difference in axle torque data. The simulation model was considered to be highly reliable given the change rate and average value of the SOC level. Using the simulation model, the workable time of driving operation was estimated to be about six hours and the workable time of plow tillage was estimated to be about 2.4 h. The results showed that the capacity of the battery is slightly low for plow tillage. However, in future studies, the electric AWD tractor performance could be improved through battery optimization through simulation under various conditions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference41 articles.

1. Evaluation of tractor fuel efficiency using dynamometer and baler operation cycle;Lee;J. Fac. Agric. Kyushu Univ.,2016

2. Electric Tractor Motor Drive Control Based on FPGA

3. Development of a parallel hybrid system for agricultural tractors;Lee;J. Fac. Agric. Kyushu Univ.,2017

4. Development of Super-capacitor Battery Charger System based on Photovoltaic Module for Agricultural Electric Carriers;Kang;J. Biosyst. Eng.,2018

5. Assessment of electric vehicle and photovoltaic integration for oil palm mechanisation practise

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3