Impact of MPL on Temperature Distribution in Single Polymer Electrolyte Fuel Cell with Various Thicknesses of Polymer Electrolyte Membrane

Author:

Nishimura AkiraORCID,Okado Tatsuya,Kojima Yuya,Hirota Masafumi,Hu Eric

Abstract

The impact of micro porous layer (MPL) with various thicknesses of polymer electrolyte membrane (PEM) on heat and mass transfer characteristics, as well as power generation performance of Polymer Electrolyte Fuel Cell (PEFC), is investigated. The in-plane temperature distribution on cathode separator back is also measured by thermocamera. It has been found that the power generation performance is improved by the addition of MPL, especially at higher current density condition irrespective of initial temperature of cell (Tini) and relative humidity condition. However, the improvement is not obvious when the thin PEM (Nafion NRE-211; thickness of 25 μm) is used. The increase in temperature from inlet to outlet without MPL is large compared to that with MPL when using thick PEM, while the difference between without MPL and with MPL is small when using thin PEM. It has been confirmed that the addition of MPL is effective for the improvement of power generation performance of single PEFC operated at higher temperatures than normal. However, the in-plane temperature distribution with MPL is not even.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3