Numerical Simulation on Effect of Separator Thickness on Coupling Phenomena in Single Cell of PEFC under Higher Temperature Operation Condition at 363 K and 373 K

Author:

Nishimura AkiraORCID,Mishima Daiki,Toyoda Kyohei,Ito Syogo,Kolhe Mohan LalORCID

Abstract

In hydrogen energy systems, the polymer electrolyte fuel cell (PEFC) is an important component. The purpose of this study is to clarify the effect of separator thickness (s.t.) in PEFC on the distributions of mass such as H2, O2, H2O and current density when PEFC is operated at 363 K and 373 K. The relative humidity (RH) of supply gases also impacts the operation. The numerical simulation (using a 3D model) with COMSOL Multiphysics has been conducted to analyze the characteristics of PEFC. It has been observed that the molar concentration of H2 using s.t. of 2.0 mm is smaller compared with the thinner s.t. cases at the initial operation temperature of a cell (Tini) = 363 K and 373 K. The molar concentration of O2 using s.t. of 2.0 mm is smaller compared with the thinner s.t. cases at Tini = 373 K, as well as the case for the RH of supply gases at the anode of 40%RH and cathode of 40%RH (A40%RH/C40%RH) irrespective of Tini. Additionally, it has been clarified that the molar concentration of H2O maintains a low value along with the gas channel at Tini = 373 K using s.t. of 1.5 mm and 1.0 mm. Moreover, it has been clarified that the current density using s.t. of 2.0 mm is the highest among the different s.t. irrespective of Tini, which is the most remarkable in the case of A40%RH&C40%RH.

Funder

Mie University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3