Influence of Plant Leaf Moisture Content on Retention of Electrostatic-Induced Droplets

Author:

Ma Jing,Liu Kuan,Chen Chenggong,Ahmad FiazORCID,Qiu Baijing

Abstract

Agricultural electrostatic spraying can help to reduce the threat of pesticides to human health and the environment. However, the influence of the law of leaf water content on electrostatic spraying has not been studied. In this study, we used leaf water content as an evaluation index of electrostatic spraying technology and verified the correlation between leaf water content and leaf capacitance value by statistical methods in order to achieve in vivo measurements of leaf water content in relation to tomato, pepper, and wheat crop leaves. Using these in vivo measurements of leaf water content and retention, we demonstrate that the retention of electrostatic droplets on the leaves of all three crops increases with increasing water content; the retention per unit area of leaves increased by 6.1 mg/cm2, an increase of 7.29%. Increasing the electrostatic spray voltage (10~30 kV) enhances the retention of droplets on the leaves of the crops, with a maximum increase of 6.1. The retention of non-electrostatic droplets decreases with increasing water content; retention at the lowest water content was 1.103~1.131 times greater than at the highest water content. This study has implications for research related to improving the retention of electrostatic droplets in leaves.

Funder

National Natural Science Foundation of China

Graduate Research and Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3