Effects of Leaf Surface Roughness and Contact Angle on In Vivo Measurement of Droplet Retention

Author:

Ma JingORCID,Liu Kuan,Dong Xiaoya,Chen Chenggong,Qiu Baijing,Zhang SongchaoORCID

Abstract

Droplet retention during pesticide application is a serious problem because run-off droplets flow out of the target area and pose a hazard to human health and the environment. The present study was conducted with the aim to measure the droplet retention of sprayed droplets on crop leaves in vivo using a constructed test system. In the measurement, three crop species with different surface properties (tomato, chili pepper, and winter wheat) were selected for droplet retention determination, and the variations in the time intervals of maximum retention and stable retention were determined. Contact angle and surface roughness (Ra), which are the most important surface properties of crop leaves, were used as independent variables. The Ra values of tomato, pepper, and winter wheat were 24.73 μm, 5.28 μm, and 17.59 μm, respectively, while the contact angles of tomato, pepper, and winter wheat were 97.67°, 70.07° and 131.98°, respectively. The results showed that the curves of droplet retention on sprayed tomato and wheat leaves had similar patterns over time and could be divided into four periods (rapidly increasing period, slowly increasing period, collapsing period, and stable period). The maximum droplet retention on tomato leaf surface was Rmax = 0.169 g⋅cm−2, and the stable retention was Rst = 0.134 g⋅cm−2. The maximum droplet retention on the surface of winter wheat leaf was Rmax = 0.244 g⋅cm−2, and the stable retention was Rst = 0.093 g⋅cm−2. However, droplet retention on pepper leaves was different from that on tomato and wheat leaves. The curve pattern of droplet retention on pepper leaves over time showed two peaks and two valleys. Moreover, the maximum retention, Rmax, was in the range of 0.149~0.151 g⋅cm−2, and the stable retention was Rst = 0.077 g⋅cm−2. It is expected that the obtained results can be used to characterize the properties of crop leaves and that this study can contribute to the improvement of droplet retention for effective chemical application and the reduction in the environmental pollution caused by agricultural pesticides.

Funder

National Natural Science Foundation of China

Primary Research & Development Plan of Jiangsu Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3