An Integrated Model of Train Re-Scheduling and Control for High-Speed Railway

Author:

Meng Xuelei,Wang Yahui,Lin Li,Li Lei,Jia Limin

Abstract

The goal of train re-scheduling is redesigning the time when trains arrive at and depart from stations of a railway section, and train control problem refers to determining the operating mode for a train in a railway section. It is quite necessary to study the two problems together, and they can be viewed as a theory base for self-driving study. We build a novel model to deal with train re-scheduling and train control problem synthetically. The approach is divided into two stages. The first stage is train re-scheduling, determining the arrival and departure time for trains. Depending on the arrival and departure time, the train running time can be calculated and it is set to be the constraint of the train control model. The destination of the second stage model is to save tracking energy in train operation process, determining the traction plan in each segment of a section between two stations. We also design a quantum-inspired particle swarm optimization algorithm to solve the integrated model. A computation case is presented to prove the availability of the approach. It can generate the re-scheduled timetable and train control plan synthetically with the approach presented in this paper. The main contribution of this paper is to propose a novel approach to solve train re-scheduling problem and train control problem synthetically. It can also provide supporting information for both the dispatchers and the train drivers to improve the on schedule rate and reduce the energy consumption. Furthermore, it may provide some valuable reference for the realization of automatic train driving.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3