Energy-Saving Optimization Method of Urban Rail Transit Based on Improved Differential Evolution Algorithm

Author:

Lu GuanchengORCID,He DeqiangORCID,Zhang Jinlai

Abstract

The transformation of railway infrastructure and traction equipment is an ideal way to realize energy savings of urban rail transit trains. However, upgrading railway infrastructure and traction equipment is a high investment and difficult process. To produce energy-savings in the urban rail transit system without changing the existing infrastructure, we propose an energy-saving optimization method by optimizing the traction curve of the train. Firstly, after analyzing the relationship between the idle distance and running energy-savings, an optimization method of traction energy-savings based on the combination of the inertia motion and energy optimization is established by taking the maximum idle distance as the objective; and the maximum allowable running speed, passenger comfort, train timetable, maximum allowable acceleration and kinematics equation as constraints. Secondly, a solution method based on the combination of the adaptive dynamic multimodal differential evolution algorithm and the Q learning algorithm is applied to solve the optimization model of energy-savings. Finally, numeric experiments are conducted to verify the proposed method. Extensive experiments demonstrate the effectiveness of the proposed method. The results show that the method has significant energy-saving properties, saving energy by about 11.2%.

Funder

National Natural Science Foundation of China

Major Project of Science and Technology of Guangxi Province of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3