The Implementation of a Low Power Environmental Monitoring and Soil Moisture Measurement System Based on UHF RFID

Author:

Korošak Žiga,Suhadolnik Nejc,Pleteršek Anton

Abstract

A smart sensor label based on the integration of ultra high frequency (UHF) radio frequency identification (RFID) technology and sensors is presented. The label is composed of a semi-active system that measures temperature, light, relative humidity and gravimetric water content (GWC) in the soil. The deployed system provides a simple, cost effective solution to monitor and control the growing of plants in modern agriculture and is intended be a part of a smart wireless sensor network (WSN) for agricultural monitoring. This paper is focused on analysis and development of a moisture sensor to measure GWC. It is based on a capacitance measurement solution, the accuracy of which is enhanced using several sensor driving frequencies. Thanks to the cancellation of supply voltage variations, the modeling of the GWC sensor and readout circuit was correct. The results we measured were close to modeled values. The maximum measurement resolution of the capacitive moisture sensor was 0.07 pF. To get the GWC from measured capacitance, a scale was used to weigh the mass of water in the soil. The comparison between capacitance measurement and calculated soil GWC is presented. The RFID measurement system has energy harvesting capabilities and an ultra-low power microcontroller, which uses embedded software to control the measurement properties. The microcontroller has to choose the appropriate model depending on the measured amplitude and chosen frequency to calculate the actual voltage on the sensing capacitor.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3