A Machine Learning-Based High-Resolution Soil Moisture Mapping and Spatial–Temporal Analysis: The mlhrsm Package

Author:

Peng Yuliang1,Yang Zhengwei2ORCID,Zhang Zhou3ORCID,Huang Jingyi4ORCID

Affiliation:

1. Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA

2. National Agricultural Statistics Service, U.S. Department of Agriculture, Washington, DC 20250, USA

3. Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA

4. Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706, USA

Abstract

Soil moisture is a key environmental variable. There is a lack of software to facilitate non-specialists in estimating and analyzing soil moisture at the field scale. This study presents a new open-sourced R package mlhrsm, which can be used to generate Machine Learning-based high-resolution (30 to 500 m, daily to monthly) soil moisture maps and uncertainty estimates at selected sites across the contiguous USA at 0–5 cm and 0–1 m. The model is based on the quantile random forest algorithm, integrating in situ soil sensors, satellite-derived land surface parameters (vegetation, terrain, and soil), and satellite-based models of surface and rootzone soil moisture. It also provides functions for spatial and temporal analysis of the produced soil moisture maps. A case study is provided to demonstrate the functionality to generate 30 m daily to weekly soil moisture maps across a 70-ha crop field, followed by a spatial–temporal analysis.

Funder

USDA Agriculture and Food Research Initiative Foundational Program

USDA Agriculture and Food Research Initiative Foundational Program Accession

USDA Hatch project

Wisconsin Alumni Research Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3