Abstract
In this article, we propose a test of the dynamics of stock market indexes typical of the US and EU capital markets in order to determine which of the two fundamental hypotheses, efficient market hypothesis (EMH) or fractal market hypothesis (FMH), best describes market behavior. The article’s major goal is to show how to appropriately model return distributions for financial market indexes, specifically which geometric Brownian motion (GBM) and geometric fractional Brownian motion (GFBM) dynamic equations best define the evolution of the S&P 500 and Stoxx Europe 600 stock indexes. Daily stock index data were acquired from the Thomson Reuters Eikon database during a ten-year period, from January 2011 to December 2020. The main contribution of this work is determining whether these markets are efficient (as defined by the EMH), in which case the appropriate stock indexes dynamic equation is the GBM, or fractal (as described by the FMH), in which case the appropriate stock indexes dynamic equation is the GFBM. In this paper, we consider two methods for calculating the Hurst exponent: the rescaled range method (RS) and the periodogram method (PE). To determine which of the dynamics (GBM, GFBM) is more appropriate, we employed the mean absolute percentage error (MAPE) method. The simulation results demonstrate that the GFBM is better suited for forecasting stock market indexes than the GBM when the analyzed markets display fractality. However, while these findings cannot be generalized, they are verisimilar.
Funder
Lucian Blaga University of Sibiu
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference102 articles.
1. The Random Character of Stock Market Prices;Cootner,1964
2. Proof that properly anticipated prices fluctuate randomly;Samuelson;Ind. Manag. Rev.,1965
3. The behavior of stock market prices;Fama;J. Bus.,1965
4. Efficient Capital Markets: A Review of Theory and Empirical Work
5. Market Efficiency Today, IERP Working Paper, 05.41;Persaran,2005
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献