Platform Revenue Strategy Selection Considering Consumer Group Data Privacy Regulation

Author:

Lin Xudong,Liu Shuilin,Huang Xiaoli,Luo Hanyang,Yu Sumin

Abstract

In the era of big data, consumer group privacy has become an important source of revenue for the digital platform. Considering the situation that the platform collects consumer group data privacy to generate business revenue, we explore how the service matching level and commission rate affect the platform revenue, social welfare, and seller benefits. Based on the theory of group privacy, the three-party equilibrium evolution is solved by constructing a sequential game model including platform, seller, and consumer alliance. It is found that when the service matching level of the platform is greater than the threshold value, there are two main situations: on the one hand, if using the data privacy of a consumer group is subject to market regulation, the platform will set a high commission rate and service matching level in order to maximize profit. However, social welfare and seller’s business benefit both reach a minimum in this case, and the three-party game cannot attain equilibrium. On the other hand, when the market governor relaxes the platform’s regulation on the use of consumer group privacy data and data revenue efficiency is high enough, the platform can maximize the revenue by increasing the service matching level and reducing the commission rate. The optimal commission rate depends on the data revenue efficiency of the platform. Moreover, when the platform sets the highest commission rate and the service matching level is at a medium level, a stable partial equilibrium among the three-party will be achieved. These conclusions can give some insights into platform’s business model choice decision.

Funder

Guangdong Province Soft Science Research Project

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3