Effect of Various Growth Medium on the Physiology and De Novo Lipogenesis of a Freshwater Microalga Scenedesmus rotundus-MG910488 under Autotrophic Condition

Author:

Dixit RishibhaORCID,Singh Surendra,Enamala Manoj Kumar,Patel AlokORCID

Abstract

The microalga Scenedesmus rotundus, isolated from Jabalpur, Madhya Pradesh, India was designated as Scenedesmus rotundus-MG910488 after morphological and molecular identification. In this study, the effects of various autotrophic growth media on the physiology and lipid accumulation of this microalga were investigated. The cell density, amount of photosynthetic pigments, the productivity of biomass and lipid content and the cell morphology of the microalga were shown to be significantly affected by the variation in growth media. The highest biomass of 754.56 ± 14.80 mg L−1 with biomass productivity of 37.73 ± 0.74 mg L−1 day−1 was achieved when this microalgae was cultivated in the Zarrouk’s medium, whereas the highest lipid content of 33.30 ± 1.21% was observed in the BG-11 medium. The results confirm that the BG-11 is a cost-effective and efficient growth medium for this microalga. It also shows that the ingredients of the growth medium and its concentration influence the growth and synthesis of biomolecules produced by microalga. The biodiesel produced from obtained lipids was qualitatively estimated by Gas Chromatography-Mass Spectroscopy (GC-MS), Nuclear Magnetic Resonance (1H, 13C NMR) and Fourier Transform-Infrared Spectroscopy (FT-IR), which indicate the presence of oleic acid methyl ester, linoleic acid methyl ester and palmitic acid methyl ester as the leading fatty acid methyl esters (FAME) in the samples, which make this strain an ideal feedstock for biodiesel production.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3