Agro-Industrial Wastewaters for Algal Biomass Production, Bio-Based Products, and Biofuels in a Circular Bioeconomy

Author:

de Carvalho Júlio CesarORCID,Molina-Aulestia Denisse Tatiana,Martinez-Burgos Walter José,Karp Susan Grace,Manzoki Maria Clara,Medeiros Adriane Bianchi PedroniORCID,Rodrigues Cristine,Scapini ThamarysORCID,Vandenberghe Luciana Porto de Souza,Vieira SabrinaORCID,Woiciechowski Adenise Lorenci,Soccol Vanete ThomazORCID,Soccol Carlos RicardoORCID

Abstract

Recycling bioresources is the only way to sustainably meet a growing world population’s food and energy needs. One of the ways to do so is by using agro-industry wastewater to cultivate microalgae. While the industrial production of microalgae requires large volumes of water, existing agro-industry processes generate large volumes of wastewater with eutrophicating nutrients and organic carbon that must be removed before recycling the water back into the environment. Coupling these two processes can benefit the flourishing microalgal industry, which requires water, and the agro-industry, which could gain extra revenue by converting a waste stream into a bioproduct. Microalgal biomass can be used to produce energy, nutritional biomass, and specialty products. However, there are challenges to establishing stable and circular processes, from microalgae selection and adaptation to pretreating and reclaiming energy from residues. This review discusses the potential of agro-industry residues for microalgal production, with a particular interest in the composition and the use of important primary (raw) and secondary (digestate) effluents generated in large volumes: sugarcane vinasse, palm oil mill effluent, cassava processing waster, abattoir wastewater, dairy processing wastewater, and aquaculture wastewater. It also overviews recent examples of microalgae production in residues and aspects of process integration and possible products, avoiding xenobiotics and heavy metal recycling. As virtually all agro-industries have boilers emitting CO2 that microalgae can use, and many industries could benefit from anaerobic digestion to reclaim energy from the effluents before microalgal cultivation, the use of gaseous effluents is also discussed in the text.

Funder

Coordination for the Improvement of Higher Education Personnel

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3