Abstract
The monitoring of neutron radiation in extreme high ≈1014 (#/cm2-s) neutron/photon fields and at extremely-low (≈10−3 #/cm2-s) levels poses daunting challenges—important in fields spanning nuclear energy, special nuclear material processing/security, nuclear medicine (e.g., photon-based cancer therapy), and high energy (e.g., dark-matter) research. Variably proportioned (neutron, gammas, X-ray) radiation, spanning 10−2–109 eV in energy, is omnipresent from ultra-low (Bq) activity levels (e.g., cosmic rays/ bananas), to extreme high (>1020 Bq) levels. E.g., in nuclear reactor cores; in spent nuclear fuel bearing nuclear-explosive-relevant safeguard-sensitive isotopes, such as Pu-239; and in cancer therapy accelerators. The corresponding high to low radiation dose range spans a daunting 1016:1 spread—alongside ancillary challenges such as high temperatures, pressure, and humidity. Commonly used neutron sensors get readily saturated even in modest (<1 R/h) photon fields; importantly, they are unable to decipher trace neutron radiation relative to 1014 times greater gamma radiation. This paper focuses on sensing ultra-low to high neutron radiation in extremely high photon (gamma-X ray) backgrounds. It summarizes the state-of-art compared to the novel tensioned metastable fluid detector (TMFD) sensor technology, which offers physics-based 100% gamma-blind, high (60–95%) intrinsic efficiency for neutron-alpha-fission detection, even under extreme (≈103 R/h) gamma radiation.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference17 articles.
1. Radiation Detection and Measurement;Knoll,2010
2. Introduction to Nuclear Engineering;Lamarsh,2001
3. Natural Background Radiation in the United States, NCRP Report No. 45;Blackburn,1975
4. Nucl. Power Reactor Instrumentation Systems Handbook;Harrer,1973
5. Reuter Stokes Fission Counter
https://www.industrial.ai/sites/g/files/cozyhq596/files/2019-06/reuter_stokes_fission_counter.pdf
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献