Performance of Borated Centrifugally Tensioned Metastable Fluid Detector Versus Ludlum 42-49B, Fuji NSN3 Detectors for Fission Energy Spectrum Neutron Detection With the Source Within Lead/Concrete Shielded Configurations

Author:

Ota Yusuke123,Taleyarkhan Rusi P.4

Affiliation:

1. School of Nuclear Engineering, Purdue University , West Lafayette, IN 47904 ; , 5-1, Ichigaya Honmura-cho, Shinjuku-Ku , Tokyo 1628801, Japan

2. Japan Ground Self-Defense Force , West Lafayette, IN 47904 ; , 5-1, Ichigaya Honmura-cho, Shinjuku-Ku , Tokyo 1628801, Japan

3. Purdue University West Lafayette

4. School of Nuclear Engineering, Purdue University, West Lafayette, IN 47904

Abstract

Abstract This paper presents the results of neutron detection efficiency and dosimetry between a borated centrifugally tensioned metastable fluid detector (B-CTMFD) configured to detect thermal to fast neutrons versus two widely used neutron detection devices of similar form factors: moderated He-3 based Ludlum-42-49B neutron detector, and, the Fuji Electric's NSN3TM (NNSN3) pressurized nitrogen-methane filled neutron detector. The one-on-one performance comparisons were conducted using soft (Cf-252 fission) neutron spectrum isotope neutron sources positioned behind various levels of lead and concrete shielding ranging in thickness from 0 cm (unshielded) to up to 30 cm. The comparisons were conducted with Monte Carlo N-Particle transport code (MCNP) code simulations to account for three-dimensional effects and to relate the absolute detection rate with the dose rate—to derive the sensitivity factor (cpm/μSv/h). While the Ludlum 42-49B and NSN3 detectors operate at a fixed sensitivity setting, the centrifugally tensioned metastable fluid detector (CTMFD) can be (and was) operated to detect and separate the contributions from epithermal (0.02 eV–0.2 MeV) and from fast (>0.2 MeV) neutrons at various sensitivity levels by varying the tensioned metastable negative pressure (Pneg) from 0.3 MPa to 0.7 MPa. The B-CTMFD (configured for detecting the full 0.02 eV to 12 MeV neutrons >0.1 MeV neutron detection at Pneg = 0.7 MPa) offered relative sensitivity enhancements of up to ∼22× greater than Ludlum and over 5× greater than NSN3, over the 0-15 cm range of Pb shielding, and the 0–30 cm concrete shield thickness. The contribution from detecting down scattered neutrons increases with increased thickness, especially for concrete shielding. The B-CTMFD design overcomes the detection penalty (up to 60% depending on shielding type and thickness) inherent in the nonborated centrifugally tensioned metastable fluid detector (NB-CTMFD), designed only to detect fast-energy neutrons—as described in the companion (Part-1) paper. However, unlike the NB-CTMFD, which used 100% decafluorapentane (DFP) (C5H2F10), the B-CTMFD requires the use of an azeotropic mixture of DFP, methanol, and tri-methyl borate (TMB—C3H9BO3, using natural boron) in 80:4:16 proportion. The B-CTMFD was about 6 times more sensitive than NB-CTMFD under the most heavily shielded condition and, taken together, also offered 2-energy bin neutron spectroscopic enablement, together with 22-5× higher absolute efficiency and relative sensitivity compared with the nonspectroscopic Ludlum (He-3) and NSN3 (methane-nitrogen) based detectors. From an intrinsic efficiency standpoint, the B-CTMFD operating at Pneg = 0.7 MPa state demonstrated ∼103× higher intrinsic efficiency over Ludlum 42-49B and NSN3 detectors, respectively.

Publisher

ASME International

Reference11 articles.

1. Threshold Rejection Mode Active Interrogation of SNMs Using Continuous Beam DD Neutrons With Centrifugal and Acoustic Tensioned Metastable Fluid Detectors;IEEE Trans. Nucl. Sci.,2017

2. Performance of CTMFD Detector versus Ludlum 42-49B, Fuji NSN3 Detectors for Hard (Am-Be) and Soft (Cf-252 Fission) Neutron Energy Spectra for Sources Within Lead/Concrete Shielded Configurations;ASME J. Nucl. Eng. Radiat.,2024

3. Tensioned Metastable Fluids and Nanoscale Interactions With External Stimuli—Theoretical-Cum-Experimental Assessments and Nuclear Engineering Applications;Nucl. Eng. Des.,2008

4. Monitoring Neutron Radiation in Extreme Gamma/X-Ray Radiation Fields;Sensors,2020

5. Hagen, A., 2018, “ Detection and Interdiction of Shielded and Unshielded Special Nuclear Material Using Tensioned Metastable Fluid Detectors,” Ph.D. dissertation, Purdue University, West Lafayette, IN.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3