Distribution of Endocrine Disruptor Chemicals and Bacteria in Saline Pétrola Lake (Albacete, SE Spain) Protected Area is Strongly Linked to Land Use

Author:

Menchén Alfonso,Espín YolandaORCID,Valiente NicolásORCID,Toledo Beatriz,Álvarez-Ortí Manuel,Gómez-Alday Juan JoséORCID

Abstract

Saline lakes are subject to numerous environmental impacts related to human activities, changing the chemical and biological natural conditions of the ecosystem. Sustainable development depends on the conservation of such delicate saline ecosystems, which may hold distinctive biodiversity. Pollution is one of the major threats to surface water bodies, for example by increasing nutrient contents and organic pollutants, including endocrine disrupting chemicals. Microbially mediated redox processes exert a fundamental control on nutrient turnover and contaminant removal. This study examines the influence of land use on the distribution of endocrine disrupting chemicals as well as on the microbial community composition in lacustrine sediments from Pétrola saline Lake (SE Spain). The lake is impacted by anthropogenic activities (agriculture, farming, mining and urban wastewater spills). Applying chemical and molecular tools (sequencing of 16S rRNA gene) showed a clear influence of land use on the chemistry and bacterial abundance of the lake sediments. The sampling points closer to wastewater outflows and mining ponds (2635, 2643 and 2650) showed fewer numbers and types of endocrine disrupting chemicals as well as a smaller number of families in the microbial community. These findings improve our understanding of how land use affects both water chemistry and the abundance of organisms responsible for biogeochemical cycles.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3