Microbial Community and Atrazine-Degrading Genetic Potential in Deep Zones of a Hypersaline Lake-Aquifer System

Author:

Espín YolandaORCID,Aranzulla Giuliana,Álvarez-Ortí ManuelORCID,Gómez-Alday Juan JoséORCID

Abstract

The chemical composition of groundwater and related surface water ecosystems can be modified by intensive agricultural activities. This is the case of the Natural Reserve of Pétrola saline lake (Albacete, SE Spain), which constitutes the discharge area of an unconfined aquifer. The extended use of fertilizers and pesticides poses a threat to ecosystem sustainability. One of the most applied herbicides worldwide has been atrazine. Despite being prohibited in Spain since 2007 by European regulations, atrazine can still be detected due to its high persistence in the environment. Atrazine degradation pathways are mediated by biological processes performed by microorganisms with adapted metabolic mechanisms that make in situ bioremediation possible. To evaluate the presence of such microorganisms in the unconfined aquifer, groundwater was collected from a flowing 37.9 m deep piezometer. DNA was extracted, and the bacterial 16S rRNA gene was amplified and cloned. Later, 93 clones were sequenced, providing the first molecular assessment of bacterial community structure in the deep zones of the aquifer. Some of these bacteria have been previously described to be involved in atrazine degradation. In addition, 14 bacteria were isolated from the groundwater samples and identified by 16S rRNA gene sequencing. DNA from these bacteria was subjected to PCR assays with primers designed for the genes involved in the atrazine degradation pathway. Positive results in the amplification were found in at least three of these bacteria (Arthrobacter sp., Nocardioides sp. and Pseudomonas sp.). The atrazine-degrading genetic potential was shown to be dependent on the trzN and atzA,B,C gene combination. These results suggest for the first time the adaptation of the bacterial population present in deep aquifer zones to atrazine exposure, even after more than 15 years of its ban in Spain. In addition, this study provides the baseline data about the bacterial communities found in deep aquifer zones from the hypersaline lake-aquifer system.

Funder

European Social Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3