Operational Planning of Energy for Non-Interconnected Zones: A Simulation-Optimization Approach and a Case Study to Tackle Energy Poverty in Colombia

Author:

Acuna Maria,Silva Carlos,Tocaruncho Andrés,Vargas Diana,Patiño Diego,Barrera DavidORCID,Peña JohanORCID

Abstract

There is a need to look for alternative sources of renewable energy, especially in zones where people continue to live under energy poverty conditions. Consequently, to enhance the performance of energy systems, algorithms to support planning decisions are required. This article proposes a simulation-optimization framework to solve the stochastic version of the integrated energy dispatch and unit commitment problem for a solar radiation system operating in non-interconnected zones. Our study was motivated by challenges faced by a rural school located in Cundinamarca, Colombia. Particularly, a simulation with optimization-based iterations approach is used, modeling solar radiation as a random variable. The optimization phase uses a heuristic procedure that enables good solutions to be found in short computational times. To test our method, computational experiments were conducted using a set of randomly generated cases. The results suggest that our approach is useful and able to handle the random nature of the process for the school “Volcanes”. Additionally, we were able to quantify the impact that using a deterministic approach has on service levels for such systems. The novelty of the article lies in the proposed method and its application to a rural school with a low-budget system.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3