Real-Time Dense Semantic Labeling with Dual-Path Framework for High-Resolution Remote Sensing Image

Author:

Wang Yuhao,Chen Chen,Ding MengORCID,Li Jiangyun

Abstract

Dense semantic labeling plays a pivotal role in high-resolution remote sensing image research. It provides pixel-level classification which is crucial in land cover mapping and urban planning. With the recent success of the convolutional neural network (CNN), accuracy has been greatly improved by previous works. However, most networks boost performance by involving too many parameters and computational overheads, which results in more inference time and hardware resources, while some attempts with light-weight networks do not achieve satisfactory results due to the insufficient feature extraction ability. In this work, we propose an efficient light-weight CNN based on dual-path architecture to address this issue. Our model utilizes three convolution layers as the spatial path to enhance the extraction of spatial information. Meanwhile, we develop the context path with the multi-fiber network (MFNet) followed by the pyramid pooling module (PPM) to obtain a sufficient receptive field. On top of these two paths, we adopt the channel attention block to refine the features from the context path and apply a feature fusion module to combine spatial information with context information. Moreover, a weighted cascade loss function is employed to enhance the learning procedure. With all these components, the performance can be significantly improved. Experiments on the Potsdam and Vaihingen datasets demonstrate that our network performs better than other light-weight networks, even some classic networks. Compared to the state-of-the-art U-Net, our model achieves higher accuracy on the two datasets with 2.5 times less network parameters and 22 times less computational floating point operations (FLOPs).

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3